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The monotone class theorem is often presented rather confusingly. I write this document

in an attempt to clarify the concept (mostly to myself, but to anyone else who wishes to

read this too).

I. DEFINITIONS

Definition 1. Here we denote the power set of X by P(X), the set of all subsets of X.

Definition 2. An algebra of sets D ⊆ P(X) is a collection of subsets of X with the following

properties:

1. A ∈ D ⇐⇒ Ac ∈ D

2. ∅ (or X) ∈ D

3. Closure under finite unions.

Definition 3. A monotone class is a family of sets M ⊆ P(X), so that for all monotone

sequences of sets A1 ⊆ A2 . . . , Ai ∈ M, we have
⋃∞

i=1 Ai ∈ M, as well as if B1 ⊇ B2 . . . ,

then
⋂∞

i=1 Bi ∈ M.

Definition 4. A σ-algebra A is a family of subsets M ⊆ P(X) with the following properties

1. X,∅ ∈ A

2. A ∈ A ⇐⇒ Ac ∈ A

3. Countable unions of elements in A are also elements of A.
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II. ADDITIONAL PROPERTIES

We state the following well known theorem without proof (in any case, it is not difficult

to prove).

Theorem 5. The final condition, together with the second condition, is equivalent to count-

able intersections of elements in A being also in A.

Corollary 6. It is now obvious that all σ-algebras are also monotone classes.

Theorem 7. Algebras are closed under set differences.

Proof. Let D ⊆ P(X) be an algebra of sets, and let A,B be sets in D. It follows that

A\B = A ∩Bc.

which is in D.

III. THE THEOREM

The goal of this will be to prove the Monotone Class Theorem:

Theorem 8. Let D ⊆ P(X) be an algebra of subsets of X. Then the smallest monotone class

containing D ist also the sigma-algebra generated by D, or the smallest σ-algebra containing

D.

Remark 9. What is exactly the problem? The problem is that not all monotone classes are

σ-algebras. Consider, for example, the following monotone class on X = {1, 2, 3} :

M = {∅, {1}, {2}, {3}, X}.

Clearly, it is trivially a monotone class, but not a sigma algebra.

Here, the main problem is that finite unions are not elements of the monotone class. We

will see eventually that this is the only problem. Near the end, we will consider countable

unions ∪∞
i=1Ai by setting Bi = ∪i

j=1Ai, which is a monotone sequence and using the monotone

union property.

We now embark on the
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Proof. Let C ⊆ P(X) be a collection of subsets of X. We define A to be the smallest

σ-algebra containing C and M to be the smallest monotone class containing C.

Since all σ-algebras are monotone classes, then M ⊆ A. It remains to prove the opposite

inclusion.

Let P ⊆ X be a subset of X. We define a set Ω(P ) to be the class of sets Q ⊆ X such

that

Ω(P ) = {Q|Q ⊆ X,P −Q ∈ M, Q− P ∈ M, P ∪Q ∈ M}.

Clearly, since M is a monotone class, Ω(P ) is also a monotone class for all P ⊆ X. The

symmetry also shows that

Q ∈ Ω(P ) ⇐⇒ P ∈ Ω(Q).

Now we fix P ∈ D. Recall that D ⊆ M. Thus, by the closure of the algebra D under set

differences, we have D ⊆ Ω(P ) for all P ∈ D. Since Ω(P ) is a monotone class, it follows

that

M ⊆ Ω(P ) ∀P ∈ D.

Thus all elements in M also have the defining properties of Ω(P ). In particular, we conclude

that M is closed under finite differences and unions. Since D is an algebra, we have X ∈ M.

The closure under complement property follows then from closure under differences.

The final step is as promised: We consider a countable union
⋃∞

i=1Ai, Ai ∈ M. We set

Bi = ∪i
j=1Ai. Every set Bi is in M because of the closure of finite unions, and each Bi is

included in the next Bi+1. Applying the monotone property, we see that M is closed under

countable unions, or M is a sigma algebra. However, since A is the smallest σ-algebra

containing D, we have A ⊆ M. The equality follows.

IV. APPLICATIONS

Definition 10. We consider two measure spaces (X,A, µ) and (Y,B, ν). We wish to con-

struct a measure and σ-algebra on the product X × Y . We define a measurable rectangle to

be a set of the form A × B, where A ∈ A and B ∈ B. The set of elementary sets E is the

set of all finite unions of disjoint measurable rectangles.

Theorem 11. E is an algebra
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Proof. Closure under intersections and finite differences follows from

A1 ×B1 ∩ A2 ×B2 =(A1 ∩ A2)× (B1 ∩B2)

A1 ×B1\A2 ×B2 =[(A1\A2)×B1] ∩ [(A1 ∩ A2)× (B1\B2)]

Closure under finite unions follow from

P ∪Q = (P −Q) ∪Q.


	Monotone Class Theorem & Product Measures
	Definitions
	Additional Properties
	The Theorem
	Applications


